

The standard logic symbols is shown below:-

The logic expression is:-

$$x = \overline{A \cdot B}$$

The truth table is:-

I/P		O/P
A	В	X
0	0	1
0	1	1
1	0	1
1	1	0

1.

$$x = \overline{A}$$

2. AND gate

$$x = \overline{A+B} = A.B$$

Construct NOT gate from NAND gate :-

1.

$$x = A$$

2. OR gate

$$x = \overline{A.B} = A+B$$

Boolean algebra is the mathematics of digital system. Variable, complement ,and literal are terms used in Boolean algebra

Law of Boolean algebra

The basic law of Boolean algebra _ The commutative laws for addition and multiplication , The associative law for addition and multiplication ,and distributive law.

1. Commutative Law:- The commutative law of addition for two variables is written as:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

The commutative Law of multiplication is:-

$$A \cdot B = B \cdot A$$

2. Associative Law:- The associative law of addition is written as:

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$

The associative Law of multiplication is :-

$$A (BC) = (AB)C$$

$$A (B+C) = AB+AC$$

Rules of Boolean algebra:-

- 1. A + 0 = A
- 2. A + 1 = 1
- 3. $A \cdot 0 = 0$
- **4.** $A \cdot 1 = A$
- 5. A + A = A
- **6.** A + \overline{A} = 1
- 7. A . A = A
- 8. A. $\overline{A} = 0$
- 9. $\overline{\overline{A}} = A$
- 10. $A + AB = A (1 + B) = A \cdot 1 = A$
- 11. $A + \overline{A} B = (A + A B) + \overline{A} B = A A + A B + A \overline{A} + \overline{A} B$ = $A(A + \overline{A}) + B (A + \overline{A})$ = A + B

De Morgan's Theorem:-

De Morgan's theorem, proposed two theorems that are important part of Boolean algebra

1- The complement of a product of variables is equal to the sum of complement of the variables .

$$\overline{\mathbf{x} \ \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

2- The complement of a sum of variables is equal to the product of complement of the variables.

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$