المحاضرة الرابعة

18: Open circuit and short circuit

For o/c there will be a voltage but no current.

For s/c there will be a current but no voltage.

EX.1: for the circuit shown below find:-

1-the open circuit voltage between points (a) and (b)

2-if the points (a) and (b) are short circuited, find the short circuit current.

Solution:-

1-when ab are open :
$$V_{ab} = V_{R2} = 80 * \frac{10}{10+10} = 40V$$

2-when ab are short circuited, then

$$R_T = \frac{R_2 \cdot R_3}{R_2 + R_3} + R_1$$

$$= \frac{15 * 10}{15 + 10} + 10 = 16\Omega$$

$$I_T = \frac{V_T}{R_T} = \frac{80}{16} = 5A$$

$$I_{sc} = I_2 = I_T \frac{R_2}{R_2 + R_3} = 5 \frac{10}{10 + 15} = 2A$$

H.W: for the circuit shown below:-

- 1-find V_{AB} and I_2 .
- 2--find V_{AB} and I_2 when points AB are opend.
- 3--find V_{AB} and I_2 when points AB are shorted .

$$1-V_{AB} = 5.88 V$$
, $I_2 = 1.47 A$
 $2-V_{AB} = 20 V$, $I_2 = 1 A$
 $3-V_{AB} = 0 V$, $I_2 = 1.666 A$

19: conversion of energy sources

A current source having a current (I) and a source resistance (R_s) can be replaced by a voltage source with a voltage of $(I.R_s)$ and a source resistance (R_s)

EX: convert the voltage source shown below to a current source and calculate the current through the 4Ω load resistance for each source.

 \star Use source transformation to find v_o in the circuit in Fig 4.17.

28

57

(a)

$$8\Omega \lessapprox \frac{v}{2} \qquad \qquad 2A$$

60

 $8\Omega \lesssim v_o$

30

4A

(b)

<u></u>

1-2Ax 2+8 =0.4A

Circuit Theorems

Eastern Mediterranean University

Example 4.6

we use current division in Fig.4.18(c) to get

$$i = \frac{2}{2+8}(2) = 0.4A$$

 $v_o = 8i = 8(0.4) = 3.2V$